next up previous contents
Next: About this document ... Up: main Previous: Bibliography   Contents


Prat-Resina, X., Garcia-Viloca, M., González-Lafont, A., Lluch, J. M.
On the modulation of the substrate activity for the racemization catalyzed by mandelate racemase enzyme. a qm/mm study.
Phys. Chem. Chem. Phys. 4:5365-5371, 2002.

Prat-Resina, X., Garcia-Viloca, M., Monard, G., González-Lafont, A., Lluch, J. M., Anglada, J. M., Bofill, J. M.
The search for stationary points on a quantum mechanical/molecular mechanical potential-energy surface.
Theor. Chem. Acc. 107:147-153, 2002.

Prat-Resina, X., Bofill, J. M., González-Lafont, A., Lluch, J. M.
Geometry optimization and transition state search in enzymes: Different options in the micro-iterative method.
Int. J. Quant. Chem. 98(4):367-377, 2004.

Prat-Resina, X., González-Lafont, A., Lluch, J. M.
How important is the refinement of transition state structures in enzymatic reactions?
J. Mol. Struct. (Theochem) 632:297-307, 2003.

Monard, G., Prat-Resina, X., González-Lafont, A., Lluch, J. M.
Determination of enzymatic reaction pathways using qm/mm methods.
Int. J. Quant. Chem. 93:229-244, 2003.

Nam, K., Prat-Resina, X., Garcia-Viloca, M., Devi-Kesavan, L. S., Gao, J.
Dynamics of an enzymatic substitution reaction in haloalkane dehalogenase.
J. Am. Chem. Soc. 126:1369-1376, 2004.

Prat-Resina, X., González-Lafont, A., Lluch, J. M.
Free energy calculations on different reaction coordinates of mandelate racemase.
in preparation.

Pauling, L., Wilson, E. B. Introduction to Quantum Mechanics. With Applications to Chemistry.
New York: Dover. 1985.

Pilar, F. L.
Elementary Quantum Chemistry: McGraw-Hill Inc.. 1968.

Daudel, R., Leroy, G., Peters, D., Sana, M. Quantum Chemistry.
New York: John Wiley & Sons. 1983.

Jensen, F. Introduction to Computational Chemistry.
West Sussex, England: John Wiley & Sons. 1999.

Fletcher, R. Practical methods of optimization.
2nd Ed. Tiptree, Essex, United Kingdom: John Wiley & Sons. 1987.

Leach, A. R. Molecular Modelling. Principles and Applications.
2nd edition Ed. Essex, England: Pearson Education. 2001.

Schlick, T. Molecular modeling and simulation. An Interdisciplinary Guide.
New York: Springer. 2002.

Allen, M. P., Tildesley, D. J. Computer Simulation of Liquids.
Oxford: Oxford University Press. 1987.

McQuarrie, D. A. Statistical Mechanics.
Sausalito, California: University Science Books. 2000.

Nye, M. J.
From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics of Disciplines, 1800-1950: University of California Press. 1994.

Levine, I. N. Química Cuántica.
Spanish version from the original "quantum chemistry" Ed. Madrid: AC. 1977.

Cramer, C. J.
Essentials of Computational Chemistry : Theories and Models: John Wiley & sons. 2002.

Nakamura, H. Nonadiabatic Transition: Concepts, Basic Theories and Applications.
Singapore: World Scientific. 2002.

Baer, M.
Introduction to the theory of electronic non-adiabatic coupling terms in molecular systems.
Phys. Rev. 358:75-142, 2002.

Handy, N. C., Yamaguchi, Y., Schaefer III, H. F.
The diagonal correction to the born-oppenheimer approximation: Its effect on the singlet-triplet splitting of ch$ _2$ and other molecular effects.
J. Chem. Phys. 84(8):4481-4484, 1986.

Wilson, E., Decius, J. C., Cross, P. Molecular Vibrations.
New York: Dover. 1980.

Kosloff, R.
Time-dependent quantum-mechanical methods for molecular dynamics.
J. Phys. Chem. 92:2087-2100, 1988.

Miller, W. H.
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations.
J. Phys. Chem. A 105:2942-2955, 2001.

Beck, M., JaKckle, A., Worth, G., Meyer, H.-D.
The multiconfiguration time-dependent hartree (mctdh) method: a highly eficient algorithm for propagating wavepackets.
Phys. Rep. 324:1-105, 2000.

Issue dedicated to time-dependent quantum molecular dynamics.
J. Phys. Chem. A 103(47).

Szabo, A., Ostlund, N. S. Modern Quantum Chemistry.
New York: Dover. 1983.

Goedecker, S.
Linear scaling electronic structure methods.
Rev. Mod. Phys. 71(4):1085-1123, 1999.

Dewar, M. J. S., Thiel, W.
Ground states of molecules, 38. the mndo method. approximations and parameters.
J. Am. Chem. Soc. 99:4899-4907, 1977.

Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P.
Am1: A new general purpose quantum mechanical model.
J. Am. Chem. Soc. 107:3902-3909, 1985.

Stewart, J. J. P.
Optimization of parameters for semiempirical methods. i. method.
J. Comp. Chem. 10:209-220, 1989.

Stewart, J. J. P.
Optimization of parameters for semiempirical methods. ii. applications.
J. Comp. Chem. 10:221-264, 1989.

Clark, T.
Quo vadis semiempirical mo-theory?
J. Mol. Struct. (Theochem) 530:1-10, 2000.

Pople, J. A., Beveridge, D. L. Approximate Molecular Orbital Theory.
New York: McGraw-Hill. 1970.

Bernal-Uruchurtu, M. I., Ruiz-Lopez, M. F.
Basic ideas for the correction of semiempirical methods describing h-bonded systems.
Chem. Phys. Lett 330:118-124, 2000.

Hohenberg, P., Kohn, W.
Inhomogeneous electron gas.
Phys. Rev. 136:864, 1964.

Ziegler, T.
Approximate density functional theory as a practical tool in molecular energetics and dynamics.
Chem. Rev. 91:651-667, 1991.

Kohn, W.
Nobel lecture: Electronic structure of matter wave functions and density functionals.
Rev. Mod. Phys. 71(5):1253-1266, 1999.

Kohn, W., Sham, L.
Self-consistent equations including exchange and correlation effects.
Phys. Rev. A 140:1133, 1965.

Parr, R. G., Yang, W.
Density Functional Theory: Oxford University Press. 1989.

Becke, A. D.
Density-functional exchange-energy approximation with correct asymptotic behavior.
Phys. Rev. A 38:3098-3100, 1988.

Lee, C., Yang, W., Parr, R. G.
Development of the colle-salvetti correlation-energy formula into a functional of the electron density.
Phys. Rev. B 37:785-789, 1988.

Becke, A. D.
Density-functional thermochemistry. iii. the role of exact exchange.
J. Chem. Phys. 98(7):5648-5652, 1993.

Koch, W., Holthausen, M. C. Chemist's Guide to Density Functional Theory.
Weinheim: Wiley-VCH. 2000.

Luchow, A., Anderson, J. B.
Monte Carlo methods in electronic structures for large systems.
Annu. Rev. Phys. Chem. 51:501-526, 2000.

Head-Gordon, M.
Quantum chemistry and molecular processes.
J. Phys. Chem. 100(31):13213-13225, 1996.

Steinbach, P. J., Brooks, B. R.
New spherical-cut-off methods for long-range forces in macromolecular simulation.
J. Comput. Chem 15:667-683, 1994.

Feller, S. E., Pastor, R. W., Rojnuckarin, A., Bogusz, S., Brooks, B. R.
Effect of electrostatic force truncation on interfacial and transport properties of water.
J. Phys. Chem. 100:17011-17020, 1996.

Frenkel, D., Smit, B. Understanding Molecular Simulation: From Algorithms to Applications.
San Diego. CA: Academic Press. 1996.

Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G. S., Profeta, J., Weiner, P.
J. Am. Chem. Soc. 106:765, 1984.

Pearlman, D., Case, D., Caldwell, J., Ross, W., Cheatham, T., Debolt, S., Ferguson, D., Seibel, G., Kollman, P.
Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular- dynamics and free-energy calculations to simulate the structural and energetic properties of molecules.
Comp. Phys. Comm. 91(1-3):1-41, 1995.

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus, M.
Charmm: A program for macromolecular energy, minimization and dynamics calculations.
J. Comput. Chem. 4(2):187-217, 1983.

MacKerell Jr., A. D., Bashford, D., Bellott, M., Dunbrack Jr., R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher III, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., Karplus, M.
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J. Phys. Chem. B 102:3586-3616, 1998.

Jorgensen, W. L., Maxwell, D. S., Tirado-Rives, J.
Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids.
J. Am. Chem. Soc. 118(45):11225-11236, 1996.

Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P., van Gunsteren, W. F.
The gromos biomolecular simulation program package.
J. Phys. Chem. A 103(19):3596-3607, 1999.

Price, D. J., Brooks III, C. L.
Modern protein force fields behave comparably in molecular dynamics simulations.
J. Comput. Chem. 23(23):1045-1057, 2002.

Cramer, C. J., Truhlar, D. G.
Implicit solvation models: Equilibria, structure, spectra, and dynamics.
Chem. Rev. 99:2161-2200, 1999.

Roux, B. Computational biochemistry & biophysics.
New York: Marcel Dekker Inc. 2001.

Cui, Q.
Combining implicit solvation models with hybrid quantum mechanical/molecular mechanical methods: A critical test with glycine.
J. Chem. Phys. 117(10):4720-4728, 2002.

Orozco, M., Luque, F. J.
Theoretical methods for the description of the solvent effect in biomolecular systems.
Chem. Rev. 100:4187-4225, 2000.

Garcia-Viloca, M., Gao, J., Karplus, M., G.Truhlar, D.
How enzymes work:analysis by modern rate theory and computer simulations.
Science 303:186-195, 2004.

Matsubara, T., Maseras, F., Koga, N., Morokuma, K.
Application of the new "integrated mo + mm" (imomm) method to the organometallic reaction pt(pr$ _3$)$ _2$ + h$ _2$ (r = h, me, t-bu, and ph).
J. Phys. Chem. 100(7):2573-2580, 1996.

Maseras, F., Lledós, A. Computational modeling of homogeneous catalysis.
Dordrecht (Holland): Kluwer. 2002: 1-21.

Sierka, M., Sauer, J.
Finding transition structures in extended systems: A strategy based on a combined quantum mechanics empirical valence bond approach.
J. Chem. Phys. 112(16):6983-6996, 2000.

Warshel, A., Levitt, M.
Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozime.
J. Mol. Biol. 103:227-249, 1976.

Singh, U. C., Kollman, P. A.
A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the $ ch_3cl+cl^-$ exchange reaction and gas phase protonation of polyethers.
J. Comput. Chem. 7(6):718-730, 1986.

Field, M. J., Bash, P. A., Karplus, M.
A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations.
J. Comput. Chem. 11(6):700-733, 1990.

Warshel, A., Karplus, M.
Calculation of ground and excited state potential surfaces of conjugated molecules. i. formulation and parametrization.
J. Am. Chem. Soc. 94(16):5612-5625, 1972.

Gao, J., Thompson, M. A., eds. Combined Quantum Mechanical and Molecular Mechanical Methods.
ACS Symposium Series 712 Washington D.C.: American Chemical Society. 1998.

Monard, G., Merz, K. M.
Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems.
Acc. Chem. Res. 32:904-911, 1999.

Field, M. J.
Simualting enzyme reactions: challenges and perspectives.
J. Comput. Chem. 23(1):48-58, 2002.

Bakowies, D., Thiel, W.
Hybrid models for combined quantum mechanical and molecular mechanical approaches.
J. Phys. Chem. 100:10580-10594, 1996.

Besler, B. H., Merz Jr., K. M., Kollman, P. A.
Atomic charges derived from semiempirical methods.
J. Comput. Chem. 11:431-439, 1990.

Luque, F. J., Reuter, N., Cartier, A., Ruiz-Lopez, M. F.
Calibration of the quantum/classical hamiltonian in semiempirical qm/mm am1 and pm3 methods.
J. Phys. Chem. A 104:10923-10931, 2000.

Cummins, P. L., Gready, J. L.
Coupled semiempirical quantum mechanics and molecular mechanics (qm/mm) calculations on the aqueous solvation free energies of ionized molecules.
J. Comput. Chem. 20:1028, 1999.

Freindorf, M., Gao, J.
Optimization of the lennard-jones parameters for a combined ab-initio quantum-mechanical and molecular mechanical potential using the 3-21g basis-set.
J. Comput. Chem. 17(4):386-395, 1996.

Martin, M. E., Aguilar, M. A., Chalmet, S., Ruiz-Lopez, M. F.
An iterative procedure to determine lennard-jones parameters for their use in quantum mechanics/molecular mechanics liquid state simulations.
Chem. Phys. 284:607-614, 2002.

Ranganathan, S., Gready, J. E.
Hybrid quantum and molecular mechanical (qm/mm) studies on the pyruvate to l-lactate interconversion in l-lactate dehydrogenase.
J. Phys. Chem. B 101(28):5614-5618, 1997.

Reuter, N., Dejaegere, A., Maigret, B., Karplus, M.
Frontier bonds in qm/mm methods: a comparison of different approaches.
J. Phys. Chem. A 104(8):1720-1735, 1999.

Hall, R. J., Hindle, S. A., Burton, N. A., Hillier, I. H.
Aspects of hybrid qm/mm calculations: the treatment of the qm/mm interface region and geometry optimization with an application to chorismate mutase.
J. Comput. Chem. 21(16):1433-1441, 2000.

Antes, I., Thiel, W.
Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods.
J. Phys. Chem. B 103:9290-9295, 1999.

Cummins, P. L., Gready, J. E.
Combined quantum and molecular mechanics (qm/mm) study of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase.
J. Phys. Chem. B 104(18):4503-4510, 2000.

Zhang, Y., Liu, H., Yang, W.
Free energy calculations on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio qm/mm potential energy surface.
J. Chem. Phys. 112(8):3483-3492, 2000.

Das, D., Eurenius, K. P., Billings, E. M., Sherwood, P., Chatfield, D. C., Hodoscek, M., Brooks, B. R.
Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method.
J. Chem. Phys. 117(23):10534-10547, 2002.

DiLabio, G. A., Hurley, M. M., Christiansen, P. A.
Simple one-electron quantum capping potentials for use in hybrid qm/mm studies of biological molecules.
J. Chem. Phys. 116(22):9578-9584, 2002.

Swart, M.
Addremove: A new link model for use in qm/mm studies.
Int. J. Quant. Chem. 91:177-183, 2003.

Théry, V., Rinaldi, D., Rivail, J.-L., Maigret, B., Frenczy, B.
Quantum mechanical computations on very large molecular systems : the local self-consistent field method.
J. Comp. Chem. 15:269-282.

Monard, G., Loos, M., Théry, V., Baka, K., Rivail, J.-L.
Hybrid classical quantum force field for modeling very large molecules.
Int. J. Quantum Chem. 58:153-159, 1996.

Nicolas Ferré, J.-L. R. Xavier Assfeld.
Specific force field parameters determination for the hybrid ab initio qm/mm lscf method.
J. Comp. Chem. 23:610-624, 2002.

Gao, J., Amara, P., Alhambra, C., Field, M. J.
A generalized hybrid orbital (gho) method for the treatment of boundary atoms in combined qm/mm calculations.
J. Phys. Chem. A 12(24):4714-4721, 1998.

Amara, P., Field, M. J., Alhambra, C., Gao, J.
The generalized hybrid orbital (gho) method for combined qm/mm calculations: Formulation and tests of the analytical derivatives.
Theor. Chem. Acc. 104:336-343, 2000.

Garcia-Viloca, M., Gao, J.
Generalized hybrid orbital for the treatment of boundary atoms in combined quantum mechanical and molecular mechanical calculations using the semiempirical parameterized model 3 method.
Theor. Chem. Acc. ASAP.

Pu, J., Gao, J., Truhlar, D. G.
Generalized hybrid orbital (gho) method for combining ab initio hartree-fock wave functions with molecular mechanics.
J. Phys. Chem. A 108(4):632-650, 2004.

Murphy, R., Philipp, D., Friesner, R.
Frozen orbital qm/mm methods for density functional theory.
Chem. Phys. Lett. 321:113-120, 2000.

HyperChem Users Manual.

Cui, Q., Elstner, M., Kaxiras, E., Frauenheim, T., Karplus, M.
A qm/mm implementation of the self-consistent charge density functional tight binding (scc-dftb) method.
J. Phys. Chem. B 105:569-585, 2001.

Formaneck, M. S., Li, G., Zhang, X., Cui, Q.
Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (scc-dftb) method:applications to structural and energetic analysis.
J. Comp. Chem. 24:565-581, 2003.

Lee, Y. S., Worthington, S. E., Krauss, M., Brooks, B. R.
Reaction mechanism of chorismate mutase studied by the combined potentials of quantum mechanics and molecular mechanics.
J. Phys. Chem. B 106:12059-12065, 2002.

Lyne, P. D., Hodoscek, M., Karplus, M.
A hybrid qm-mm potential employing hartree-fock or density functional methods in the quantum region.
J. Phys. Chem. A 103:3462-3471, 1999.

Tuńón, I., Martins-Costa, M., Millot, C., Ruiz-López, M., Rivail, J.
A coupled density functional-molecular mechanics monte carlo simulation method: The water molecule in liquid water.
J. Comput. Chem. 17(1):19-29, 1996.

Tuńón, I., Martins-Costa, M., Millot, C., Ruiz-López, M.
Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. i. proton transfer in strongly h-bonded complexes.
J. Chem. Phys. 106(9):3633-3642, 1997.

Friesner, R. A., Dunietz, B. D.
Large-scale ab initio quantum chemical calculations on biological systems.
Acc. Chem. Res. 34:351-358, 2001.

Sherwood, P., de Vries, A. H., Guest, M. F., Schreckenbach, G., Catlow, C. R. A., French, S. A., Sokol, A. A., Bromley, S. T., Thiel, W., c, A. J. T., Billeter, S., Terstegen, F., Thiel, S., Kendrick, J., Rogers, S. C., Casci, J., Watson, M., King, F., Karlsen, E., Sjřvoll, M., Fahmi, A., Schafer, A., Lennartz, C.
Quasi: A general purpose implementation of the qm/mm approach and its application to problems in catalysis.
J. Mol. Struct. (Theochem) 632:1-28, 2003.

Kongsted, J., Osted, A., Mikkelsen, K. V., Christiansen, O.
Coupled cluster/molecular mechanics method: Implementation and application to liquid water.
J. Phys. Chem. B 107:2578-2588, 2003.

Car, R., Parrinello, M.
Unified approach for molecular dynamics and density-functional theory.
Phys. Rev. Lett. 55(22):2471-2474, 1985.

Carloni, P., Rothlisberger, U., Parrinello, M.
The role and perspective of ab initio molecular dynamics in the study of biological systems.
Acc. Chem. Res. 35:455-464, 2002.

Maseras, F., Morokuma, K.
Imomm: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states.
J. Comput. Chem. 16(9):1170-1179, 1995.

Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K., Frisch, M. J.
A new oniom implementation in gaussian98. part i. the calculation of energies, gradients, vibrational frequencies and electric field derivatives.
J. Mol. Struct. (Theochem) 461:1-21, 1999.

Hurley, M. M., Wright, J. B., Lushington, G. H., White, W. E.
Quantum mechanics and mixed quantum mechanics/molecular mechanics simulations of model nerve agents with acetylchozlinesterase.
Theor. Chem. Acc. 109:160-168, 2003.

Vreven, T., Morokuma, K.
Investigation of the s$ _0\to$s$ _1$ excitation in bacteriorhodopsin with the oniom (mo:mm) hybrid method.
Theor. Chem. Acc 109(3):125-132, 2003.

Warshel, A.
Computer Modeling of Chemical Reactions in Enzymes and Solutions: New York. 1992.

Warshel, A.
Molecular dynamics simulations of enzymatic reactions.
Acc. Chem. Res. 35:385-395, 2002.

Warshel, A., Parson, W. W.
Dynamics of biochemical and biophysical reactions : insight from computer simulations.
Quarterly Review of Biopysics 4:563-679, 2001.

Warshel, A.
Computer simulations of enzyme catalysis: Methods, progress, and insights.
Ann. Rev. Biophys. Biomol. Struct. 32:425-443, 2003.

Mo, Y., Gao, J.
An ab initio molecular orbital-valence bond (movb) method for simulating chemical reactions in solution.
J. Phys. Chem. A 104:3012-3020, 2000.

Devi-Kesavan, L. S., Garcia-Viloca, M., Gao, J.
Semiempirical qm/mm potential with simple valence bond (svb) for enzyme reactions. application to the nucleophilic addition reaction in haloalkane dehalogenase.
Theor. Chem. Acc. 109(3):133-139, 2003.

Hong, G., Strajbl, M., Wesolowski, T. A., Warshel, A.
Constraining the electron densities in dft method as an effective way f or ab initio studies of metal-catalyzed reactions.
J. Comp. Chem. 21(16):1554-1561, 2000.

Cummins, P. L., Gready, J. E.
Computational methods for the study of enzymic reaction mechanisms. ii. an overlapping mechanically embedded method for hybrid semi-empirical-qm/mm calculations.
J. Mol. Struct. (Theochem) 632:247-257, 2003.

Hayashi, S., Ohmine, I.
Proton transfer in bacteriorhodopsin: Structure, excitation, ir spectra, and potential energy surface analyses by an ab initio qm/mm method.
J. Phys. Chem. B 104:10678-10691, 2000.

Poteau, R., Ortega, I., Alary, F., Solis, A. R., Barthelat, J.-C., Daudey, J.-P.
Effective group potentials. 1. method.
J. Phys. Chem. A 105:198-205, 2001.

Kairys, V., Jensen, J. H.
Qm/mm boundaries across covalent bonds: A frozen localized molecular orbital-based approach for the effective fragment potential method.
J. Phys. Chem A 104:6656-6665, 2000.

Gogonea, V., Westerhoff, L. M., Merz Jr., K. M.
Quantum mechanical/quantum mechanical methods. i. a divide and conquer strategy for solving the schrodinger equation for large molecular systems using a composite density functional semiempirical hamiltonian.
J. Chem. Phys. 113(14):5604-5613, 2000.

Cui, Q., Guo, H., Karplus, M.
Combining ab initio and density functional theories with semiempirical methods.
J. Chem. Phys. 117(12):5617-5631, 2002.

Komeiji, Y., Nakano, T., Fukuzawa, K., Ueno, Y., Inadomi, Y., Nemoto, T., Uebayasi, M., G.Fedorov, D., a, K. K.
Fragment molecular orbital method:i application to molecular dynamics simulation, ab initio fmo-md.
Chem. Phys. Lett. 372:342-347, 2003.

Zhang, D. W., Zhang, J. Z. H.
Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein molecule interaction energy.
J. Chem. Phys. 119(7):3599-3605, 2003.

Cui, Q., Karplus, M.
Molecular properties from combined qm/mm methods. i. analytical second derivative and vibrational calculations.
J. Chem. Phys. 112(3):1133-1149, 2000.

Wales, D. J.
A microscopic basis for the global appearance of energy landscapes.
Science 293:2067-2070, 2001.

Onuchic, J. N., Luthey-Schulten, Z., Wolynes, P. G.
Theory of protein folding: The energy landscape perspective.
Annu. Rev. Phys. Chem. 48:545-600, 1997.

Simons, J., Jorgensen, P., Taylor, H., Ozment, J.
J. Phys. Chem. 87:2745, 1983.

Banerjee, A., Adams, N., Simons, J., Shepard, R.
Search for stationary points on surfaces.
J. Phys. Chem. 89:52-57, 1985.

Pulay, P.
Improved scf convergence acceleration.
J. Comput. Chem. 3:556, 1982.

Császár, P., Pulay, P.
Geometry optimization by direct inversion in the iterative subspace.
J. Mol. Struct. 114:31-34, 1984.

Wittbrodt, J. M., Schlegel, H. B.
Estimating stretching force constants for geometry optimization.
J. Mol. Struct. (Theochem) 398:55-61, 1997.

Bofill, J. M.
Updated hessian matrix and the restricted step method for locating transition structures.
J. Comput. Chem. 15(1):1-11, 1994.

Anglada, J. M., Bofill, J. M.
How good is a broyden-fletcher-goldfarb-shanno-like update hessian formula to locate transition structures? specific reformulation of broyden-fletcher-goldfarb-shanno for optimizing saddle points.
J. Comput. Chem. 19(3):349-362, 1998.

Bolhuis, P. G., Chandler, D., Dellago, C., Geissler, P. L.
Transition path sampling: throwing ropes over rough mountain passes, in the dark.
Annu. Rev. Phys. Chem. 53:291-318, 2002.

Schlegel, B.
Exploring potential energy surfaces for chemical reactions: An overview of some practical methods.
J. Comput. Chem. 24(12):1515-1527, 2003.

Heidrich, D., ed. The Reaction Path in Chemistry: Current Approaches and Perspectives.
Dordrecht: Kluwer Academic. 1995.

Eurenius, K. P., Chatfield, D. C., Brooks, B. R., Hodoscek, M.
Enzyme mechanisms with hybrid quantum mechanical and molecular mechanical potentials. i. theoretical considerations.
Int. J. Quantum Chem. 60(6):1189-1200, 1996.

Fukui, K.
The path of chemical reactions - the irc approach.
Acc. Chem. Res. 14(12):363-368, 1981.

Henkelman, G., Jóhannesson, G., Jónsson, H.
Methods for finding saddle points and minimum energy paths.
In: Progress on Theoretical Chemistry and Physics. Schwartz, S. D. ed. . Kluwer Academic Publishers 2000  269-300.

Henkelman, G., Jónsson, H.
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points.
J. Chem. Phys. 113(22):9978-9985, 2001.

Chu, J.-W., Trout, B. L., Brooks, B. R.
A super-linear minimization scheme for the nudged elastic band method.
J. Chem. Phys. 119(24):12708-12717, 2003.

Crehuet, R., Field, M. J.
A temperature-dependent nudged-elastic-band algorithm.
J. Chem. Phys. 118(21):9563-9571, 2003.

Fischer, S., Karplus, M.
Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom.
Chem. Phys. Lett. 194(3):252-261, 1992.

Dutzler, R., Schirmer, T., Karplus, M., Fischer, S.
Translocation mechanism of long sugar chains across the maltoporin membrane channel.
Structure 10(9):1273-1284, 2002.

Woodcock, H. L., Hodoscek, M., Sherwood, P., Lee, Y. S., Schaefer III, H. F., R.Brooks, B.
Exploring the quantum mechanical/molecular mechanical replica path method: a pathway optimization of the chorismate to prephenate claisen rearrangement catalyzed by chorismate mutase.
Theor. Chem. Acc. 109(3):140-148, 2003.

Pulay, P., Fogarasi, G.
Geometry optimization in redundant internal coordinates.
J. Chem. Phys. 96(4):2856-2860, 1992.

Kudin, K. N., Scuseria, G. E., Schlegel, H. B.
A redundant internal coordinate algorithm for optimization of periodic systems.
J. Chem. Phys. 114(7):2919-2923, 2001.

Eckert, F., Pulay, P., Werner, H.-J.
Ab initio geometry optimization for large molecules.
J. Comput. Chem. 18(12):1473-1483, 1997.

Nocedal, J.
Updating quasi-newton matrices with limited storage.
Mathematics of Computation 35(151):773-782, 1980.

Liu, D. C., Nocedal, J.
On the limited memory bfgs method for large scale optimization.
Math. Programming 45:503-528, 1989.

Moreales, J. L., Nocedal, J.
Enriched methods for large-scale unconstrained optimization.
Comp. Opt. Appl. 21(2):143-154, 2002.

Anglada, J. M., Besalú, E., Bofill, J. M., Rubio, J.
Another way to implement the powell formula for updating hessian matrices related to transition structures.
J. Math. Chem. 25:85-92, 1999.

Schlick, T., Overton, M.
J. Comput. Chem. 8:1025, 1987.

Derremaux, P., Zhang, G., Schlick, T., Brooks, B.
A truncated newton minimizer adapted for charmm and biomolecular applications.
J. Comput. Chem. 15(5):532-552, 1994.

Thomas, A., Field, M. J.
Reaction mechanism of the hgxprtase from plasmodium falciparum: A hybrid potential quantum mechanical/ molecular mechanical study.
J. Am. Chem. Soc. 12432-12438, 2002.

Moliner, V., Turner, A. J., Williams, I. H.
Transition-state structural refinement with grace and charmm: realistic modelling of lactate dehydrogenase using a combined quantum/classical method.
J. Chem. Soc. Chem. Comm. 14:1271-1272, 1997.

Turner, A. J., Moliner, V., Williams, I. H.
Transition-state structural refinement with grace and charmm: Flexible qm/mm modelling for lactate dehydrogenase.
Phys. Chem. Chem. Phys. 1:1323-1331, 1999.

Billeter, S. R., Turner, A. J., Thiel, W.
Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates.
Phys. Chem. Chem. Phys. 2:2177-2186, 2000.

Vreven, T., Morokuma, K., Farkas, Ö., Schlegel, H. B., Frisch, M. J.
Geometry optimization with combined methods. i. micro-iterations and constraints.
J. Comput. Chem. 24(6):760-769, 2003.

Németh, K., Coulaud, O., Monard, G., Ángyán, J. G.
Linear scaling algorithm for the coordinate transformation problem of molecular geometry optimization.
J. Chem. Phys. 113(6):5598-5603, 2000.

Németh, K., Coulaud, O., Monard, G., Ángyán, J. G.
An efficient method for the coordinate transformation problem of massively three-dimensional networks.
J. Chem. Phys. 114(22):9747-9753, 2001.

Paizs, B., Baker, J., Suhai, S., Pulay, P.
Geometry optimization of large biomolecules in redundant internal coordinates.
J. Chem. Phys 113(16):6566-6572, 2000.

Tuckerman, M. E., Martyna, G. J.
Understanding modern molecular dynamics: Techniques and applications.
J. Phys. Chem. B 104:159-178, 2000.

Goldstein, H. Mecánica Clásica.
Barcelona: Reverté. 1996.
Spanish translation of the second english edition.

Truhlar, D. G., Gao, J., Alhambra, C., Garcia-Viloca, M., Corchado, J., Sánchez, M. L., Villá, J.
The incorporation of quantum effects in enzyme kinteics modeling.
Acc. Chem. Res. 35(6):341-349, 2002.

Elber, R., Ghosh, A., Cárdenas, A.
Long time dynamics of complex systems.
Acc. Chem. Res. 35:396-403, 2002.

Issue dedicated to molecular dynamics simulations of biomolecules.
Acc. Chem. Res. 35(6).

Andersen, H. C.
Molecular dynamics simulations at constant pressure and/or temperature.
J. Chem. Phys. 72(4):2384-2393, 1980.

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., Haak, J. R.
Molecular dynamics with coupling to an external bath.
J. Chem. Phys. 81(8):3684-3690, 1984.

Nosé, S.
A unified formulation of the constant temperature molecular dynamics methods.
J. Chem. Phys. 81(1):511-519, 1984.

Hoover, W. G.
Canonical dynamics: Equilibrium phase-space distributions.
Phys. Rev. A 31(3):1695-1697, 1985.

Martyna, G. J., and, M. L. K.
Nosé-hoover chains: The canonical ensemble via continuous dynamics.
J. Chem. Phys. 97(4):2635-2643, 1992.

Cheng, A., Merz Jr., K. M.
Application of the nosé-hoover chain algorithm to the study of protein dynamics.
J. Phys. Chem. 100(5):1927-1937, 1996.

Zhang, Y., Feller, S. E., Brooks, B. R., Pastor, R. W.
Computer simulation of liquid/liquid interfaces. i. theory and application to octane/water.
J. Chem. Phys. 103(23):10252-10266, 1995.

Ryckaert, J.-P., Ciccotti, G., Berendsen, H. J. C.
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes.
J. Comp. Phys. 23:327-341, 1977.

Kräutler, V., Gunsteren, W. F. V., Hünenberger, P. H.
A fast shake algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations.
J. Comput. Chem. 22(5):501-508, 2001.

Tobias, D. J., Brooks III, C. L.
Molecular dynamics with internal coordinate constraints.
J. Chem. Phys. 89(9):5115-5127, 1988.

Coluzza, I., Sprik, M., Ciccotti, G., Fom, A.
Constrained reaction coordinate dynamics for systems with constraints.
Mol. Phys. 101(18):2885-2894, 2003.

Issue dedicated to computational molecular biophysics.
J. Comput. Phys. 1(151).

Brooks III, C. L., Karplus, M.
Deformable stochastic boundaries in molecular dynamics.
J. Chem. Phys. 79(12):6312-6325, 1983.

Brunger, A., Brooks III, C. L., Karplus, M.
Stochastic boundary conditions for molecular dynamics simulations of st2 water.
Chem. Phys. Lett. 105(5):495-500, 1984.

Brooks III, C. L., Brunger, A., Karplus, M.
Active site dynamics in protein molecules: A stochastic boundary molecular-dynamics approach.
Biopolymers 24:843-865, 1985.

Brooks III, C. L., Karplus, M.
Solvent effects on protein motion and protein effects on solvent motion. dynamics of the active site region of lysozyme.
J. Mol. Biol. 208:159-181, 1989.

Alhambra, C., Gao, J.
Hydrogen bonding interactions in the active site of a low molecular weight protein tyrosine phosphatase.
J. Comput. Chem. 21:1192-1203, 2000.

Li, G., Zhang, X., Cui, Q.
Free energy perturbation calculations with combined qm/mm potentials complications, simplifications, and applications to redox potential calculations.
J. Phys. Chem. B 107:8643-8653, 2003.

Garcia-Viloca, M., Alhambra, C., G.Truhlar, D., Gao, J.
Hydride transfer catalyzed by xylose isomerase: Mechanism and quantum effects.
J. Comp. Chem. 24:177-190, 2003.

Tolman, R. C. The Principles of Statistical Mechanics.
New York: Dover Publications Inc.. 1979.

Chandler, D. Introduction to Modern Statistical Mechanics.
New York: Oxford University Press. 1987.

Kollman, P.
Free energy calculations: Applications to chemical and biochemical phenomena.
Chem. Rev. 93:2395-2417, 1993.

Masgrau, L., Ŕngels González-Lafont, Lluch, J. M.
Dependence of the rate constants on the treatment of internal rotation modes: The reaction oh + ch$ _3$sh $ \to$ ch$ _3$s + h$ _2$o as an example.
J. Comput. Chem. 24(6):701-706, 2003.

Garcia-Viloca, M., Alhambra, C., Truhlar, D. G., Gao, J.
Inclusion of quantum-mechanical vibrational energy in reactive potentials of mean force.
J. Chem. Phys. 114(22):9953-9958, 2001.

Stanton, R. V., Dixon, S. L., Merz, Jr., K. M.
Free energy perturbation calculations within quantum mechanical methodologies.
In: Computational Approaches to Biochemical reactivity. Naray-Szabo, G., Warshel, A. eds. . Kluwer Academic Publishers Dordrecht 1997  103-123.

Torrie, G. M., Valleau, J. P.
Nonphysical sampling distributions in monte carlo free energy estimation: Umbrella sampling.
J. Comput. Phys. 23:187-199, 1977.

González-Lafont, A., Lluch, J. M., Bertrán, J.
Monte carlo simulations of chemical reactions in solution.
In: Solvent Effects and Chemical Reactivity. Tapia, O., Bertrán, J. eds. Understanding Chemical Reactivity. Kluwer Academic Publishers Dordrecht 1996  125-177.

Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A., Rosenberg, J. M.
The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method.
J. Comput. Chem. 13(8):1992, 1011-1021.

Boczko, E. M., Brooks III, C. L.
Constant-temperature free energy surfaces for physical and chemical processes.
J. Phys. Chem. 97:4509-4513, 1993.

Rajamani, R., Naidoo, K. J., Gao, J.
Implementation of an adaptive umbrella sampling method for the calculation of multidimensional potential of mean force of chemical reactions in solution.
J. Comput. Chem. 24:1775-1781, 2003.

Roux, B.
The calculation of the potential of mean force using computer simulations.
Comput. Phys. Commun. 91:275-282, 1995.

Eyring, H.
The activated complex and the absolute rate of chemical reactions.
Chem. Rev. 17(1):65-77, 1935.

Truhlar, D., Garrett, B., Klippenstein, S.
Current status of transition-state theory.
J. Phys. Chem. 100(31):12771-12800, 1996.

Geissler, P. L., Dellago, C., Chandler, D., Hutter, J., Parrinello, M.
Autoionization in liquid water.
Science 291:2121-2124, 2001.

Gao, J., Truhlar, D.
Quantum mechanical methods for enzyme kinetics.
Ann. Rev. Phys. Chem. 53:467-505, 2002.

Himo, F., Siegbahn, P. E. M.
Quantum chemical studies of radical-containing enzymes.
Chem. Rev. 103:2421-2456, 2003.

Noodleman, L., Lovell, T., Han, W.-G., Li, J., Himo, F.
Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems.
Chem. Rev. 104(2):459-508, 2004.

York, D. M., Lee, T.-S., Yang, W.
Quantum mechanical treatment of biological macromolecules in solution using linear-scaling electronic structure methods.
Phys. Rev. Lett. 80(22):5011-5014, 1998.

Boero, M., Terakura, K., Tateno, M.
Catalytic role of metal ion in the selection of competing reaction paths: A first principles molecular dynamics study of the enzymatic reaction in ribozyme.
J. Am. Chem. Soc. 124:8949-8957, 2002.

Benkovic, S. J., Hammes-Schiffer, S.
A perspective on enzyme catalysis.
Science 301:1196-1202, 2003.

Villŕ, J., Warshel, A.
Energetics and dynamics of enzymatic reactions.
J. Phys. Chem. B 105:7887-7907, 2001.

Garcia-Viloca, M., González-Lafont, A., Lluch, J. M.
A qm/mm study of the racemization of vinylglycolate catalyzed by mandelate racemase enzyme.
J. Am. Chem. Soc. 123:709-721, 2001.

Gerlt, J. A., Kozarich, J. W., Kenyon, G. L., Gassman, P. G.
Electrophilic catalysis can explain the unexpected acidity of carbon acids in enzyme-catalyzed reactions.
J. Am. Chem. Soc. 113(25):9667-9669, 1991.

Mitra, B., Kallarakal, A. T., Kozarich, J. W., Gerlt, J. A., Clifton, J. R., Petsko, G. A., Kenyon, G. L.
Mechanism of the reaction catalyzed by mandelate racemase: Importance of electrophilic catalysis by glutamic acid 317.
Biochemistry 34(9):2777-2787, 1995.

Gerlt, J. A., Gassman, P. G.
An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: importance of late transition states in concerted mechanisms.
J. Am. Chem. Soc. 115(24):11552-11568, 1993.

Bearne, S. L., Wolfenden, R.
Mandelate racemase in pieces: Effective concentrations of enzyme functional groups in the transition state.
Biochemistry 36(7):1646-1656, 1997.

Kenyon, G. L., Gerlt, J. A., Petsko, G. A., Kozarich, J. W.
Mandelate racemase: Structure-function studies of a pseudosymmetric enzyme.
Acc. Chem. Res. 28:178-186, 1995.

Humphrey, W., Dalke, A., Schulten, K.
Vmd: Visual molecular dynamics.
J. Mol. Graph. 14(1):33-38, 1996.

Li, R., Powers, V. M., Kozarich, J. W., Kenyon, G. L.
Racemization of vinylglycolate catalyzed by mandelate racemase.
J. Org. Chem. 60(11):3347-3351, 1995.

Landro, J. A., Kenyon, G. L., Kozarich, J. W.
Mechanism-based inactivation of mandelate racemase by propargylglycolate.
Bioorg. Med. Chem. Lett. 2(11):1411-1418, 1992.

Goriup, M., Strauss, U. T., Felfer, U., Kroutil, W., Faber, K.
Substrate spectrum of mandelate racemase part 1: Variation of the $ \alpha $-hydroxy acid moiety.
J. Mol. Catal. B 15:207-212, 2001.

Whitman, C. P., Hegeman, G. D., Cleland, W. W., Kenyon, G. L.
Symmetry and asymmetry in mandelate racemase catalysis.
Biochemistry 24(15):3936-3942, 1985.

Maurice, M. S., Bearne, S. L.
Reaction intermediate analogues for mandelate racemase: Interaction between asn 197 and the r-hydroxyl of the substrate promotes catalysis.
Biochemistry 39(44):13324-13335, 2000.

Goriup, M., Strauss, U. T., Felfer, U., Kroutil, W., Faber, K.
Substrate spectrum of mandelate racemase part 2. (hetero)-aryl-substituted mandelate derivatives and modulation of activity.
J. Mol. Catal. B 15:213-222, 2001.

Maurice, M. S., Bearne, S. L.
The low barrier hydrogen bond in enzymatic catalysis.
J. Biol. Chem. 39(44):13324-13335, 2000.

Schnell, B., Faber, K., Kroutil, W.
Enzymatic racemisation and its application to synthetic biotransformations.
Adv. Synth. Catal. 345:653-666, 2003.

Kallarakal, A. T., Mitra, B., Kozarich, J. W., Gerlt, J. A., Clifton, J. R., Petsko, G. A., Kenyon, G. L.
Mechanism of the reaction catalyzed by mandelate racemase: Structure and mechanistic properties of the k166r mutant.
Biochemistry 34(9):2788-2797, 1995.

Neidhart, D. J., Howell, P. L., Petsko, G. A., Powers, V. M., Li, R., Kenyon, G. L., Gerlt, J. A.
Mechanism of the reaction catalyzed by mandelate racemase. 2. crystal structure of mandelate racemase at 2.5 åresolution: Identification of the active site and possible catalytic residues.
Biochemistry 30(38):9264-9273, 1991.

Schafer, S. L., Barrett, W. C., Kallarakal, A. T., Mitra, B., Kozarich, J. W., Gerlt, J. A.
Mechanism of the reaction catalyzed by mandelate racemase: Structure and mechanistic properties of the d270n mutant.
Biochemistry 35(18):5662-5669, 1996.

Northrop, D. B.
Follow the protons: A low-barrier hydrogen bond unifies the mechanism of the aspartic proteases.
Acc. Chem. Res. 34(10):790-797, 2001.

Guthrie, J. P., Kluger, R.
Electrostatic stabilization can explain the unexpected acidity of carbon acids in enzyme-catalyzed reactions.
J. Am. Chem. Soc. 115(24):11569-11572, 1993.

Alagona, G., Ghio, C., Kollman, P. A.
Ab initio explorative survey of the mechanism catalyzed by mandelate racemase.
J. Mol. Struct. (Theochem) 390:217-223, 1997.

Landro, J. A., Gerlt, J. A., Kozarich, J. W., Koo, C. W., Shah, V. J., Kenyon, G. L., Neidhart, D. J., Fujita, S., Petsko, G. A.
The role of lysine 166 in the mechanism of mandelate racemase from pseudomonas putida: Mechanistic and crystallographic evidence for stereospecific alkylation by (r)-$ \alpha $-phenylglycidate.
Biochemsitry 33:635-643, 1994.

Hutter, M. C., Hughes, J. M., Reimers, J. R., Hus, N. S.
Modeling the bacterial photosynthetic reaction center. 2. a combined quantum mechanical/molecular mechanical study of the structure of the cofactors in the reaction centers of purple bacteria.
J. Phys. Chem. B 103(23):4906-4915, 1999.

Cheng, A., Stanton, R. S., Vincent, J. J., van der Vaart, A., Damodaran, K. V., Dixon, S. L., Hartsough, D. S., Mori, M., Best, S. A., Monard, G., Garcia-Viloca, M., Zant, L. C. V., Merz, Jr., K. M. ROAR 2.0.
The Pennsylvania State University. 1999.

Merz Jr., K. M., Banci, L.
Binding of azide to human carbonic anhydrase ii: The role electrostatic complementarity plays in selecting the preferred resonance structure of azide.
J. Phys. Chem. 100(43):17414-17420, 1996.

Jorgensen, W. L., Chandrasekhar, J., Madura, J., Impey, R. W., Klein, M. L.
Comparison of simple potential functions for simulating liquid water.
J. Chem. Phys. 79:926-935, 1983.

Gerlt, J. A., Gassman, P. G.
Understanding the rates of certain enzyme-catalyzed reactions: Proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phosphodiesters.
Biochemsitry 32(45):11943-11952, 1993.

Frisch, M. J., Trucks, G. W. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery Jr., J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., , A., P. J.
Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh, PA, USA.

Schlick, T., Skeel, R., Brunger, A. T., Kalé, L. V., Board, J. A., Hermans, J., Schulten, K.
Algorithmic challenges in computational molecular biophysics.
J. Comput. Phys. 151:9-48, 1999.

Elber, R., Shalloway, D.
Temperature dependent reaction coordinates.
J. Chem. Phys. 112(13):5539-5545, 2000.

Das, B., Meirovitch, H., Navon, I. M.
Performance of hybrid methods for large-scale unconstrained optimization as applied to models of proteins.
J. Comput. Chem. 24:1222-1231, 2003.

Anglada, J. M., Besalú, E., Bofill, J. M.
Remarks on large-scale matrix diagonalization using a lagrange- newton-raphson minimization in a subspace.
Theor. Chem. Acc. 103:163-165, 1999.

Leininger, M. L., Sherrill, C. D., Allen, W. D., Schaefer III, H. F.
Systematic study of selected diagonalization methods for configuration interaction matrices.
J. Comp. Chem. 22(13):1574-1589, 2001.

Besalú, E., Bofill, J. M.
On the automatic restricted-step rational-function-optimization.
Theor. Chem. Acc. 100:265-274, 1998.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D. LAPACK User's Guide.
3rd Ed. Philadelphia: SIAM. 1999.

Alagona, G., Ghio, C., Kollman, P. A.
Do enzymes stabilize transition states by electrostatic interactions or pka balance: The case of triose phosphate isomerase (tim)?
J. Am. Chem. Soc. 117(39):9855-9862, 1995.

Andrés, J., Moliner, V., Krechl, J., Silla, E.
J. Chem. Soc. Perkin Trans. 2:1551, 1995.

Gao, J.
Absolute free energy of solvation from monte carlo simulation using combined quantum and molecular mechanical potentials.
J. Phys. Chem. 96:537-540, 1992.

Truong, T. N., Stefanovich, E. V.
Development of a perturbative approach for monte carlo simulations using a hybrid ab initio qm/mm method.
Chem. Phys. Lett. 256:348-352, 1996.

Cubero, E., Luque, F. J., Orozco, M., Gao, J.
Perturbation approach to combined qm/mm simulation of solute-solvent interactions in solution.
J. Phys. Chem. B 107:1664-1671, 2003.

Evans, T. J., Truong, T. N.
Optimizing efficiency of perturbative monte carlo method.
J. Comput. Chem. 19(14):1632-1638, 1998.

Bell, S., Crighton, J. S., Fletcher, R.
A new efficient method for locating saddle points.
Chem. Phys. Lett. 82:122-126, 1981.

Golub, G. H., Loan, C. F. V. Matrix Computations.
3rd Ed. USA: The John Hopkins University Press. 1996.

Li, G., Cui, Q.
Analysis of functional motions in brownian molecular machines with an efficient block normal mode approach: Myosin-ii and ca$ ^+2$-atpase.
Bioph. J. 86(2):743-763, 2004.

Bofill, J. M., de Pinho Ribeiro Moreira, I., Anglada, J. M., Illas, F.
Accurate and efficient determination of higher roots in diagonalization of larges matrices based in function restricted optimization algorithms.
J. Comput. Chem. 21(15):1375-1386, 2000.

Bofill, J. M., Anglada, J. M.
Some remarks on the use of the three-term recurrence method in the configuration interaction eigenvalue problem.
Chem. Phys. 183:19-26, 1994.

Besalú, E., Bofill, J. M.
Calculation of clustered eigenvalues of large matrices using variance minimization method.
J. Comput. Chem. 19(15):1777-1785, 1998.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. Numerical Recipes in Fortran 77: The Art of Scientific Computing.
2nd Ed.: Cambridge University Press. copyright 1986-1992.

Gao, J., Garcia-Viloca, M., Poulsen, T. D., Mo, Y.
Solvent effects, reaction coordinates, and reorganization energies on nucleophilic substitution reactions in aqueous solution.
In: Advances in Physical Organic Chemistry. Vol. 38. Vol. 38. . Elsevier 2003  161-181.

Gao, J.
A priori computation of a solvent-enhanced sn2 reaction profile in water: the menshutkin reaction.
J. Am. Chem. Soc. 113(20):7796-7797, 1991.

van Gunsteren, W. F., Mark, A. E.
Validation of molecular dynamics simulation.
J. Chem. Phys. 108(15):6109-6116, 1998.

Xavier Prat Resina 2004-09-09