Publications

2019

  • Mance, D.; Comas-Vives, A.; Copéret, C. Proton-Detected Multidimensional Solid-State NMR Enables Precise Characterization of Vanadium Surface Species at Natural Abundance. J. Phys. Chem. Lett. 2019, 0 (ja).https://doi.org/10.1021/acs.jpclett.9b02872.

  • Foppa, L.; Iannuzzi, M.; Copéret, C.; Comas-Vives, A. CO Methanation on Ruthenium Flat and Stepped Surfaces: Key Role of H-Transfers and Entropy Revealed by Ab Initio Molecular Dynamics. J. Catal. 2019, 270–275. https://doi.org/10.1016/j.jcat.2019.02.008.

  • Belviso, F.; Claerbout, V. E. P.; Comas-Vives, A.; Dalal, N. S.; Fan, F. R.; Filippetti, A.; Fiorentini, V.; Foppa, L.; Franchini, C.; Geisler, B.; Ghiringhelli, L. M.; Groß, A.; Hu, S.; Íñiguez, J.; Kauwe, S. K.; Musfeldt, J. L.; Nicolini, P.; Pentcheva, R.; Polcar, T.; Ren, W.; Ricci, F.; Ricci, F.; Sen, H. S.; Skelton, J. M.; Sparks, T. D.; Stroppa, A.; Urru, A.; Vandichel, M.; Vavassori, P.; Wu, H.; Yang, K.; Zhao, H. J.; Puggioni, D.; Cortese, R.; Cammarata, A. Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing Applications. Inorg. Chem. 2019, 0 (0). https://doi.org/10.1021/acs.inorgchem.9b01785.

  • Foppa, L.; Larmier, K.; Comas-Vives, A. What Can We Learn from First Principles Multi-Scale Models in Catalysis? The Role of the Ni/Al2O3 Interface in Water-Gas Shift and Dry Reforming as a Case Study. Chimia (Aarau). 2019, 73 (4), 239–244.https://doi.org/10.2533/chimia.2019.239.

  • Lam, E.; Corral-Pérez, J. J.; Larmier, K.; Noh, G.; Wolf, P.; Comas-Vives, A.; Urakawa, A.; Copéret, C. CO 2 Hydrogenation on Cu/Al 2 O 3 : Role of the Metal/Support Interface in Driving Activity and Selectivity of a Bifunctional Catalyst . Angew. Chemie Int. Ed. 2019, 58 (39), 13989–13996.https://doi.org/10.1002/anie.201908060.

  • Calvo, R.; Comas-Vives, A.; Togni, A.; Katayev, D. Taming Radical Intermediates for the Construction of Enantioenriched Trifluoromethylated Quaternary Carbon Centers. Angew. Chemie - Int. Ed. 2019, 58 (5), 1447–1452.https://doi.org/10.1002/anie.201812793.

  • Foppa, L.; Iannuzzi, M.; Copéret, C.; Comas-Vives, A. Facile Fischer-Tropsch Chain Growth from CH2 Monomers Enabled by the Dynamic CO Adlayer. ACS Catal. 2019, 0 (ja), 6571–6582.https://doi.org/10.1021/acscatal.9b00239.

2018

  • Corral-Pérez, J. J.; Bansode, A.; Praveen, C. S.; Kokalj, A.; Reymond, H.; Comas-Vives, A.; Vandevondele, J.; Copéret, C.; Von Rohr, P. R.; Urakawa, A. Decisive Role of Perimeter Sites in Silica-Supported Ag Nanoparticles in Selective Hydrogenation of CO2 to Methyl Formate in the Presence of Methanol. J. Am. Chem. Soc. 2018, 140 (42), 13884–13891.https://doi.org/10.1021/jacs.8b08505.

  • Foppa, L.; Yamamoto, K.; Liao, W. C.; Comas-Vives, A.; Copéret, C. Electronic Structure-Reactivity Relationship on Ruthenium Step-Edge Sites from Carbonyl 13C Chemical Shift Analysis. J. Phys. Chem. Lett. 2018, 9 (12), 3348–3353.https://doi.org/10.1021/acs.jpclett.8b01332.

  • Foppa, L.; Iannuzzi, M.; Copéret, C.; Comas-Vives, A. Adlayer Dynamics Drives CO Activation in Ru-Catalyzed Fischer-Tropsch Synthesis. ACS Catal. 2018, 8 (8), 6983–6992. https://doi.org/10.1021/acscatal.8b01232.

2017

  • Lam, E.; Comas-Vives, A.; Copéret, C. Role of Coordination Number, Geometry, and Local Disorder on27Al NMR Chemical Shifts and Quadrupolar Coupling Constants: Case Study with Aluminosilicates. J. Phys. Chem. C 2017, 121 (36). https://doi.org/10.1021/acs.jpcc.7b07872.

  • Harris, J. W.; Liao, W.-C.; Di Iorio, J. R.; Henry, A. M.; Ong, T.-C.; Comas-Vives, A.; Copéret, C.; Gounder, R. Molecular Structure and Confining Environment of Sn Sites in Single-Site Chabazite Zeolites. Chem. Mater. 2017, 29 (20). https://doi.org/10.1021/acs.chemmater.7b03209.

  • Delley, M. F.; Lapadula, G.; Núñez-Zarur, F.; Comas-Vives, A.; Kalendra, V.; Jeschke, G.; Baabe, D.; Walter, M. D.; Rossini, A. J.; Lesage, A.; Emsley, L.; Maury, O.; Copéret, C. Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies. J. Am. Chem. Soc. 2017, 139 (26). https://doi.org/10.1021/jacs.7b02179.

  • Delley, M. F.; Silaghi, M.-C.; Nuñez-Zarur, F.; Kovtunov, K. V.; Salnikov, O. G.; Estes, D. P.; Koptyug, I. V.; Comas-Vives, A.; Coperet, C. X-H Bond Activation on Cr(III),O Sites (X = R, H): Key Steps in Dehydrogenation and Hydrogenation Processes. Organometallics 2017, 36 (1). https://doi.org/10.1021/acs.organomet.6b00744.

  • Delley, M. F.; Praveen, C. S.; Borosy, A. P.; Núñez-Zarur, F.; Comas-Vives, A.; Copéret, C. Olefin Polymerization on Cr(III)/SiO2: Mechanistic Insights from the Differences in Reactivity between Ethene and Propene. J. Catal. 2017, 354. https://doi.org/10.1016/j.jcat.2017.08.016.


  • Larmier, K.; Liao, W.-C.; Tada, S.; Lam, E.; Verel, R.; Bansode, A.; Urakawa, A.; Comas-Vives, A.; Copéret, C. CO2-to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal–Support Interface. Angew. Chemie - Int. Ed. 2017, 56 (9). https://doi.org/10.1002/anie.201610166.

  • Kim, S. M.; Abdala, P. M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; Van Beek, W.; Comas-Vives, A.; Copéret, C.; Müller, C. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts. J. Am. Chem. Soc. 2017, 139 (5). https://doi.org/10.1021/jacs.6b11487.

  • Foppa, L.; Margossian, T.; Kim, S. M.; Müller, C.; Copéret, C.; Larmier, K.; Comas-Vives, A. Contrasting the Role of Ni/Al2O3 Interfaces in Water-Gas Shift and Dry Reforming of Methane. J. Am. Chem. Soc. 2017, 139 (47). https://doi.org/10.1021/jacs.7b08984.

  • Floryan, L.; Borosy, A. P.; Núñez-Zarur, F.; Comas-Vives, A.; Copéret, C. Strain Effect and Dual Initiation Pathway in CrIII/SiO2 Polymerization Catalysts from Amorphous Periodic Models. J. Catal. 2017, 346. https://doi.org/10.1016/j.jcat.2016.11.037.

  • Praveen, C. S.; Comas-Vives, A.; Copéret, C.; VandeVondele, J. Role of Water, CO2, and Noninnocent Ligands in the CO2 Hydrogenation to Formate by an Ir(III) PNP Pincer Catalyst Evaluated by Static-DFT and Ab Initio Molecular Dynamics under Reaction Conditions. Organometallics 2017, 36 (24). https://doi.org/10.1021/acs.organomet.7b00761.

  • Comas-Vives, A.; Larmier, K.; Copéret, C. Understanding Surface Site Structures and Properties by First Principles Calculations: An Experimental Point of View! Chem. Commun. 2017, 53 (31). https://doi.org/10.1039/C7CC01101F.

2016

  • Larmier, K.; Tada, S.; Comas-Vives, A.; Copéret, C. Surface Sites in Cu-Nanoparticles: Chemical Reactivity or Microscopy? J. Phys. Chem. Lett. 2016, 7 (16). https://doi.org/10.1021/acs.jpclett.6b01328.

  • Valla, M.; Wischert, R.; Comas-Vives, A.; Conley, M. P.; Verel, R.; Copéret, C.; Sautet, P. Role of Tricoordinate Al Sites in CH3ReO3/Al2O3 Olefin Metathesis Catalysts. J. Am. Chem. Soc. 2016, 138 (21). https://doi.org/10.1021/jacs.6b00447.

  • Comas-Vives, A.; Furman, K.; Gajan, D.; Akatay, M. C.; Lesage, A.; Ribeiro, F. H.; Copéret, C. Predictive Morphology, Stoichiometry and Structure of Surface Species in Supported Ru Nanoparticles under H2 and CO Atmospheres from Combined Experimental and DFT Studies. Phys. Chem. Chem. Phys. 2016, 18 (3). https://doi.org/10.1039/c5cp06710c.

  • Foppa, L.; Copéret, C.; Comas-Vives, A. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles. J. Am. Chem. Soc. 2016, 138 (51). https://doi.org/10.1021/jacs.6b08697.

  • Foppa, L.; Silaghi, M.-C.; Larmier, K.; Comas-Vives, A. Intrinsic Reactivity of Ni, Pd and Pt Surfaces in Dry Reforming and Competitive Reactions: Insights from First Principles Calculations and Microkinetic Modeling Simulations. J. Catal. 2016, 343. https://doi.org/10.1016/j.jcat.2016.02.030.

  • Wolf, P.; Valla, M.; Núñez-Zarur, F.; Comas-Vives, A.; Rossini, A. J.; Firth, C.; Kallas, H.; Lesage, A.; Emsley, L.; Copéret, C.; Hermans, I. Correlating Synthetic Methods, Morphology, Atomic-Level Structure, and Catalytic Activity of Sn-β Catalysts. ACS Catal. 2016, 6 (7). https://doi.org/10.1021/acscatal.6b00114.

  • Copéret, C.; Comas-Vives, A.; Conley, M. P.; Estes, D. P.; Fedorov, A.; Mougel, V.; Nagae, H.; Núnez-Zarur, F.; Zhizhko, P. A. Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. Chem. Rev. 2016, 116 (2). https://doi.org/10.1021/acs.chemrev.5b00373.

  • Silaghi, M.-C.; Comas-Vives, A.; Copéret, C. CO2 Activation on Ni/γ-Al2O3 Catalysts by First-Principles Calculations: From Ideal Surfaces to Supported Nanoparticles. ACS Catal. 2016, 6 (7). https://doi.org/10.1021/acscatal.6b00822.

2015

  • Comas-Vives, A.; Valla, M.; Copéret, C.; Sautet, P. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon-Carbon Bond Formation upon Dimethyl Ether Activation on Alumina. ACS Cent. Sci. 2015, 1 (6). https://doi.org/10.1021/acscentsci.5b00226.

  • Comas Vives, A.; Schwarzwälder, M.; Copéret, C.; Sautet, P. Carbon Carbon Bond Formation by Activation of CH3F on Alumina. J. Phys. Chem. C 2015, 119 (13). https://doi.org/10.1021/jp512598p.

  • Delley, M. F.; Núñez-Zarur, F.; Conley, M. P.; Comas-Vives, A.; Siddiqi, G.; Norsic, S.; Monteil, V.; Safonova, O. V.; Copéret, C. Erratum : SI Correction: Proton Transfers Are Key Elementary Steps in Ethylene Polymerization on Isolated Chromium(III) Silicates (Proceedings of the National Academy of Sciences of the United States of America). Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (32). https://doi.org/10.1073/pnas.1512497112.

  • Delley, M. F.; Nunez-Zarur, F.; Conley, M. P.; Comas-Vives, A.; Siddiqi, G.; Norsic, S.; Monteil, V.; Safonova, O. V; Coperet, C. Reply to Peters et Al.: Proton Transfers Are Plausible Initiation and Termination Steps on Cr(III) Sites in Ethylene Polymerization. Proc. Natl. Acad. Sci. U. S. A. 2015. https://doi.org/10.1073/pnas.1507555112.

  • Delley, M. F.; Núñez-Zarur, F.; Conley, M. P.; Comas-Vives, A.; Siddiqi, G.; Norsic, S.; Monteil, V.; Safonova, O. V.; Copéret, C. Erratum: Proton Transfers Are Key Elementary Steps in Ethylene Polymerization on Isolated Chromium(III) Silicates (Proceedings of the National Academy of Sciences of the United States of America (2015) 112:32 (E4505))). Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (32). https://doi.org/10.1073/pnas.1512495112.

  • Conley, M. P.; Delley, M. F.; Núnez-Zarur, F.; Comas-Vives, A.; Copéret, C. Heterolytic Activation of C-H Bonds on CrIII-O Surface Sites Is a Key Step in Catalytic Polymerization of Ethylene and Dehydrogenation of Propane. Inorg. Chem. 2015, 54 (11). https://doi.org/10.1021/ic502696n.

2014

  • Delley, M. F.; Núñez-Zarur, F.; Conley, M. P.; Comas-Vives, A.; Siddiqi, G.; Norsic, S.; Monteil, V.; Safonova, O. V.; Copéret, C. Proton Transfers Are Key Elementary Steps in Ethylene Polymerization on Isolated Chromium(III) Silicates. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (32). https://doi.org/10.1073/pnas.1405314111.

  • Wolf, P.; Valla, M.; Rossini, A. J.; Comas-Vives, A.; Núñez-Zarur, F.; Malaman, B.; Lesage, A.; Emsley, L.; Copéret, C.; Hermans, I. NMR Signatures of the Active Sites in Sn-β Zeolite. Angew. Chemie - Int. Ed. 2014, 53 (38). https://doi.org/10.1002/anie.201403905.

  • Wolf, P.; Valla, M.; Rossini, A. J.; Comas-Vives, A.; Núñez-Zarur, F.; Malaman, B.; Lesage, A.; Emsley, L.; Copéret, C.; Hermans, I. NMR Signatures of the Active Sites in Sn-β Zeolite. Angew. Chemie - Int. Ed. 2014. https://doi.org/10.1002/anie.201403905.

  • Conley, M. P.; Rossini, A. J.; Comas-Vives, A.; Valla, M.; Casano, G.; Ouari, O.; Tordo, P.; Lesage, A.; Emsley, L.; Copéret, C. Silica-Surface Reorganization during Organotin Grafting Evidenced by 119Sn DNP SENS: A Tandem Reaction of Gem-Silanols and Strained Siloxane Bridges. Phys. Chem. Chem. Phys. 2014, 16 (33). https://doi.org/10.1039/c4cp01973c.

2013

  • Busó-Rogero, C.; Herrero, E.; Bandlow, J.; Comas-Vives, A.; Jacob, T. CO Oxidation on Stepped-Pt(111) under Electrochemical Conditions: Insights from Theory and Experiment. Phys. Chem. Chem. Phys. 2013, 15 (42).https://doi.org/10.1039/c3cp53282h.

  • Comas-Vives, A.; Bandlow, J.; Jacob, T. Ab Initio Study of the Electrochemical H2SO4/Pt(111) Interface. Phys. Chem. Chem. Phys. 2013, 15 (3). https://doi.org/10.1016/S0263-7863(02)00093-5.

2011

  • Kleiner, K.; Comas-Vives, A.; Naderian, M.; Mueller, J. E.; Fantauzzi, D.; Mesgar, M.; Keith, J. A.; Anton, J.; Jacob, T. Multiscale Modeling of Au-Island Ripening on Au(100). Adv. Phys. Chem. 2011, 2011. https://doi.org/10.1155/2011/252591.

2010

  • Comas-Vives, A.; Ujaque, G.; Lledos, A. INNER- AND OUTER-SPHERE HYDROGENATION MECHANISMS: A COMPUTATIONAL PERSPECTIVE. In Advances in Inorganic Chemistry: Theoretical and Computational Inorganic Chemistry, Vol 62; 2010. https://doi.org/10.1016/s0898-8838(10)62006-5.

  • Comas-Vives, A.; Ujaque, G.; Lledós, A. Inner- and Outer-Sphere Hydrogenation Mechanisms: A Computational Perspective; 2010; Vol. 62. https://doi.org/10.1016/S0898-8838(10)62006-5.

  • Comas-Vives, A.; Stirling, A.; Lledós, A.; Ujaque, G. The Wacker Process: Inner- Or Outer-Sphere Nucleophilic Addition? New Insights from Ab Initio Molecular Dynamics. Chem. - A Eur. J. 2010, 16 (29). https://doi.org/10.1002/chem.200903522.

  • Comas-Vives, A.; Lledós, A.; Poli, R. A Computational Study of the Olefin Epoxidation Mechanism Catalyzed by Cyclopentadienyloxidomolybdenum(VI) Complexes. Chem. - A Eur. J. 2010, 16 (7).https://doi.org/10.1002/chem.200902873.

2009

  • Comas-Vives, A.; Ujaque, G.; Lledós, A. Mechanistic Evaluation of Metal-Catalyzed Hydrogen-Transfer Processes: The Shvo Catalyst as an Example of Computational Unravelling. J. Mol. Struct. THEOCHEM 2009, 903 (1–3). https://doi.org/10.1016/j.theochem.2008.11.043.

2008

  • Comas-Vives, A.; González-Arellano, C.; Boronat, M.; Corma, A.; Iglesias, M.; Sánchez, F.; Ujaque, G. Mechanistic Analogies and Differences between Gold- and Palladium-Supported Schiff Base Complexes as Hydrogenation Catalysts: A Combined Kinetic and DFT Study. J. Catal. 2008, 254 (2).https://doi.org/10.1016/j.jcat.2007.12.015

  • Comas-Vives, A.; Ujaque, G.; Lledós, A. Theoretical Analysis of the Hydrogen-Transfer Reaction to C=N, C=C, and C≡C Bonds Catalyzed by Shvo’s Ruthenium Complex. Organometallics 2008, 27 (19). https://doi.org/10.1021/om700975k.

2007

  • Comas-Vives, A.; Ujaque, G.; Lledós, A. Hydrogen Transfer to Ketones Catalyzed by Shvo’s Ruthenium Hydride Complex: A Mechanistic Insight. Organometallics 2007, 26 (17). https://doi.org/10.1021/om7004832

  • Jee, J.-E.; Comas-Vives, A.; Dinoi, C.; Ujaque, G.; Van Eldik, R.; Lledós, A.; Poli, R. Nature of Cp*MoO2+ in Water and Intramolecular Proton-Transfer Mechanism by Stopped-Flow Kinetics and Density Functional Theory Calculations. Inorg. Chem. 2007, 46 (10). https://doi.org/10.1021/ic062409g.

2006

  • Comas-Vives, A.; González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F.; Ujaque, G. Single-Site Homogeneous and Heterogeneized Gold(III) Hydrogenation Catalysts: Mechanistic Implications. J. Am. Chem. Soc. 2006, 128 (14). https://doi.org/10.1021/ja057998o.

2005

  • Planas, J. G.; Viñas, C.; Teixidor, F.; Comas-Vives, A.; Ujaque, G.; Lledós, A.; Light, M. E.; Hursthouse, M. B. Self-Assembly of Mercaptane-Metallacarborane Complexes by an Unconventional Cooperative Effect: A C-H⋯S-H⋯H-B Hydrogen/Dihydrogen Bond Interaction. J. Am. Chem. Soc. 2005, 127 (45). https://doi.org/10.1021/ja055210w